October 13, 2015

Office of Electricity Delivery & Energy Reliability

Conservation Voltage Reduction

Joseph Paladino (joseph.paladino@hq.doe.gov) National Summit on Smart Grid and Climate Change Washington, DC

Energy Efficiency Potential thru Volt/VAR Optimization

* 2019 value including societal and GHG benefits

Source: McKinsey on Smart Grid, Summer 2010

2010 GRID-LAB-D Analysis: National deployment of CVR provides a 3.0% reduction in annual energy consumption for the electricity sector. 80% of this benefit can be achieved from 40% of feeders.

PNNL National Assessment of CVR

GridLAB-D simulation on 24 prototypical feeders:

- Annual energy reduction per feeder ranges from 0.5 - 4%, however, the result depends..
- National deployment results in 3% annual energy reduction (6,500 MWyr = 5 million homes)
- If deployed on high-value feeders (40%), the annual energy consumption can be reduced nationally by 2.4%

From "Evaluation of Conservation Voltage Reduction (CVR) on a National Level", by KP Schneider et al., July 2010, PNNL - 19596

Voltage Profile

Line voltage drops from the LTC at the head of the distribution line to customers farther out on the line.

Voltage Optimization

A voltage regulator can boost (raise) or buck (lower) voltage at a point on the distribution line and regulate down-line voltage.

Coordinated LTC, Regulator and Capacitor Bank

A capacitor bank can help regulation by compensating for the lagging power factor of load and the line itself.

Approaches Vary Significantly

Projects vary with utility objectives, operational experience, and current system configurations and equipment.

Functionality	SGIG Projects
Voltage and VAR Control	17
Voltage Optimization	11
Voltage Optimization and CVR	13
Total	41

Source: SGIG Proposals, MBRPs Build metrics and Navigant analysis

CVR – reduce voltage at lowest extent possible during peak and/or non-peak

VO –flatten the load curve and/or optimize voltage to meet utility's objectives, e.g., peak demand reduction, reactive power compensation, line loss minimization

VVC – sensing and remote operation of voltage and VAR control devices

Benefit Streams from Improved Voltage Management

Additional Benefits: system stress relief (emergency load reduction) and voltage management needed for integration of distributed energy resources

Energy and Demand Reductions

Туре	(%) Average Voltage Reduction	Average CVR Factor		%	Average CVR Factor		%
		Expected ENERGY	Actual ENERGY	Reduction ENERGY	Expected PEAK	Actual PEAK	Reduction PEAK
ΙΟυ	0.76 - 4.10	0.40 - 1.30	0.06 - 1.24	0.78 - 3.00	0.33 - 1.48	0.33 - 1.24	0.84 - 2.84
Соор	1.98 - 5.00	0.80	1.00 - 1.09	1.60 - 2.62	0.75 - 1.06	0.85 - 1.61	2.98 - 3.84
Muni	1.00 - 4.00	0.36 - 1.05	0.34 - 1.10	0.82 - 2.15	0.50 - 1.00	0.50 - 2.70	1.00 - 7.00
Federal	1.00 - 4.00	0.50 - 1.50	????	0.75 - 2.50	0.50 - 1.50	???	???
NEEA	2.50	0.60	0.69	2.07	0.6	0.78	1.80

Based on an investigation of 41 CVR studies by DOE's National Technology Energy Laboratory and Applied Energy Group for the DOE Office of Electricity Delivery and Energy Reliability

Objectives: Apply data from end-of-line sensors to automatically control line voltage regulators and load tap changers at substation feeder head. Also, coordinate capacitors to keep power factor of the substation transformer near unity.

Results Averaged across 11 Circuits	Initial Results	Potential Customer Savings (estimated for a 7 MW peak circuit with 53% load factor)		
Customer Energy Reduction	2.9%	943 MWh/year	\$75,440 (at \$.08/kWh)	
Peak Demand Reduction	3%	210 kW	Defer construction of peaking plants	

Dominion Virginia Power's CVR Business Case

In August 2008, Dominion Virginia Power had developed a business case for its AMI solution for its 2.4 million Virginia jurisdictional customers.

(Projections based on data filed in Dominion Virginia Power rate case PUE – 2009-00019)

<u>Levelized Cost of Energy (LCOE)</u> – A metric for comparing the relative economics of an energy resource. LCOE is expressed in \$/kWh (generating OR cost of energy saved) and incorporates the lifetime costs of a resource (capital expenses, operating expenses and fuel).

From Lazard's LCOE analysis (Sept 2014) combined with Applied Energy Group's analysis (for CVR)

Philadelphia Electric Company

PA Act 129 (2008) – PA utilities required to reduce energy consumption and peak demand (2009 – 2012). PECO's CVR program budget was 1.2% of the total program budget (\$328.6 million) with highest net benefits accounting for 20% of the total

- 1. Major advancements in CVR technologies without compromising reliability
- 2. Value proposition is strong, but
 - a. Reliable full-scale deployment cost data remains elusive (many pilot projects)
 - b. Value proposition for utilities impacted by disincentive of lost revenues
- 3. Momentum building as some utilities and regulators beginning to treat CVR in the EE resource portfolio, and leverage the regulatory mechanisms (e.g., cost recovery and lost revenue adjustments) and performance incentives already in place for EE programs.
 - a. For example, OH, MD, WA, OR and PA include CVR in EE portfolios, CO, CA and IL under consideration
 - b. However, there is lack of standardization in planning and evaluation tools (cost-benefit model specifications for comparative resource planning)
- 4. Business hurdles exist:
 - a. New technology and vendor risk (including DER integration)
 - b. Competing investment priorities
- 5. Leadership and increased awareness needed:
 - a. Sharing of CVR cost/performance data and regulatory treatments
 - b. Industry organizations can develop and promote reliable planning and evaluation tools/protocols