

STEER MODEL BRIEFING

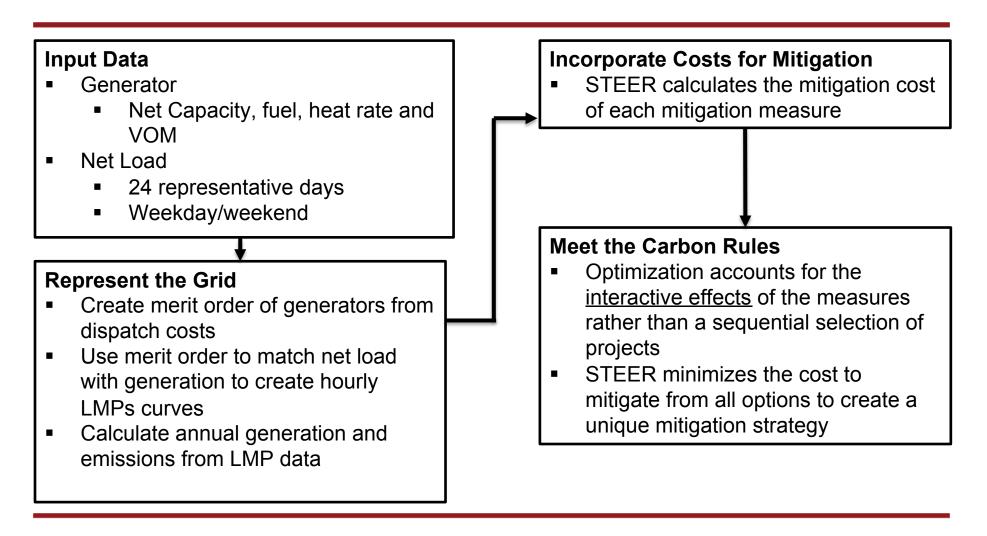
October 2015

BACKGROUND

- Model developed by 5 Lakes Energy and a University of Michigan team led by Professor Jeremiah Johnson
- Built for Advanced Energy Economy Institute
- Initially developed for Michigan
- Versions being built for Pennsylvania, Arkansas, Illinois, Virginia, North Carolina, and Georgia
- Finishing the last updates for the Final Clean Power Plan

WHAT IS STEER?

- The State Tool for Electricity Emissions Reduction (STEER) is an open-access integrated resource planning (IRP) tool
- It solves for least-cost Clean Power Plan (CPP) implementation given policy options, load and price forecasts
- All data, inputs, and formulae are visible to and changeable by the user
- STEER is Excel based and can be downloaded for free at info.AEE.net/steer



WHAT IS THE PURPOSE OF STEER?

- Utilities are often the only party able to model scenarios, but their proprietary models limit the sharable assumptions, etc.
- STEER provides all stakeholders with a lighter weight but analogous and transparent IRP tool for CPP planning
- Stakeholders can use STEER to quickly analyze options
- Utilities will and should use their models for detailed planning
- STEER can cross check results and identify key issues for discussion

HOW DOES STEER WORK?

KEY FEATURES OF STEER'S DESIGN

- It is a cost optimization model not a potentials calculator
- Freely accessibly to all stakeholders
- Excel file is transparent and runs in a matter of seconds
- Contains public default data; allows easy user modification
- High resolution inputs/results match utility & regulator norms
 - Data for existing resources is at the generator-level
 - Full compliance range: generation to demand management
 - RE resources are site-specific with hourly resolution
 - EE is measure-by-measure from potential studies
- Reflects interactive effects of mitigation options
- Results include emissions and costs (e.g. rate impact by class)

STEER INCORPORATES SOME IMPORTANT SIMPLIFICATIONS

Simplifications

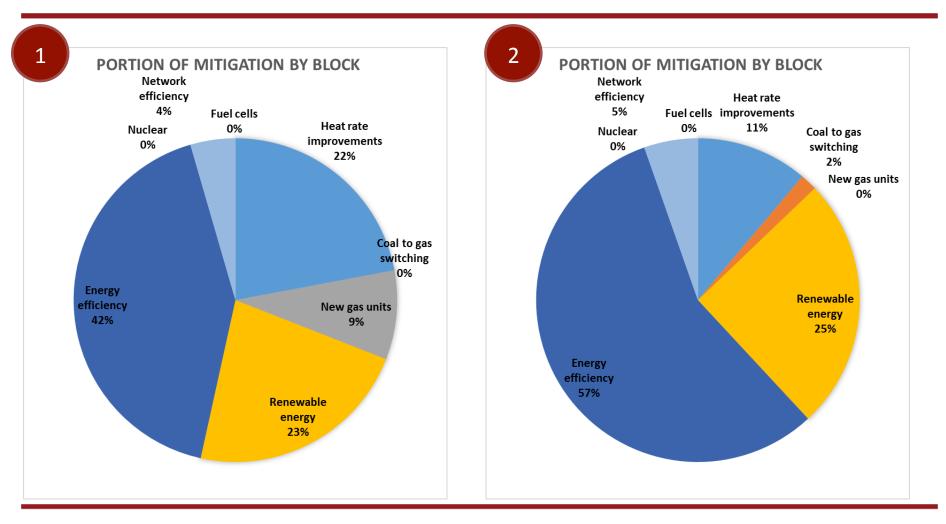
- Does not incorporate power flow and transmission constraints
- Calculates least-cost plan for user-selected single year (usually 2030); no aggregation of annual results over time
- Designed for individual states, not regions (does allow for imports/exports)

Implications

- Designed for options analysis options and crosschecking proposals
- Utilities will and should still run their models to further analyze plan
- Some mitigation options may require policy changes to realize full benefits (e.g., DR)

KEY EARLY FINDINGS FROM STEER MODELING OF THE PROPOSED CPP

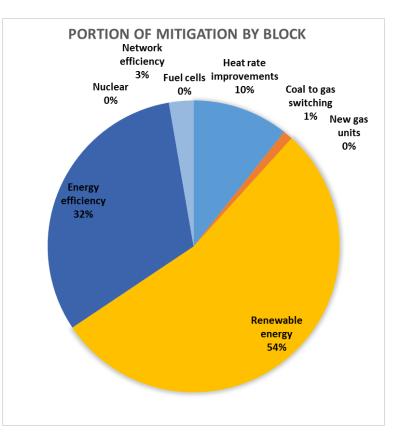
- Compliance with the Clean Power Plan can save ratepayers money vs. business-as-usual depending on options selected
- Some compliance options are cost-effective regardless of the Clean Power Plan
- Long-term uncertainty and volatility of gas prices suggests additional renewable generation should be built even with today's low gas prices



TWO EXAMPLE SCENARIOS RUN FOR PENNSYLVANIA UNDER PROPOSED CPP

Key Assumptions Natural Gas \$4.40/MMBtu Base Achievable EE 8% RPS Current Exports No Interstate Carbon Allowance Purchases	Key Assumptions Natural Gas \$6.73/MMBtu Max Achievable EE 8% RPS Reduce Exports 15% Purchase 20% Interstate Carbon Allowances
↓	↓
Net annual cost of mitigation: (\$1,141 million)	Net annual cost of mitigation: \$86 million
Avg Rate Increase: (\$0.0076)	Avg Rate Increase: \$0.0060

MITIGATION BY MEASURE FOR BOTH SCENARIOS UNDER PROPOSED CPP

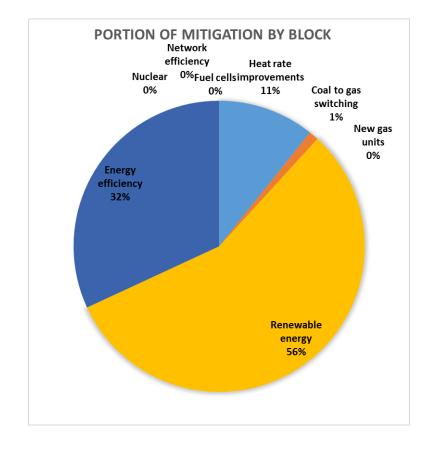


MORE DETAIL ON NETWORK EFFICIENCY IN MICHIGAN UNDER PROPOSED CPP

With Network Efficiency

Net cost of CPP: (\$96 million) Average Rate Change: (\$0.0009/kWh)

Network Efficiency technologies include Dynamic Volt-VAR control and Conservation Voltage Reduction

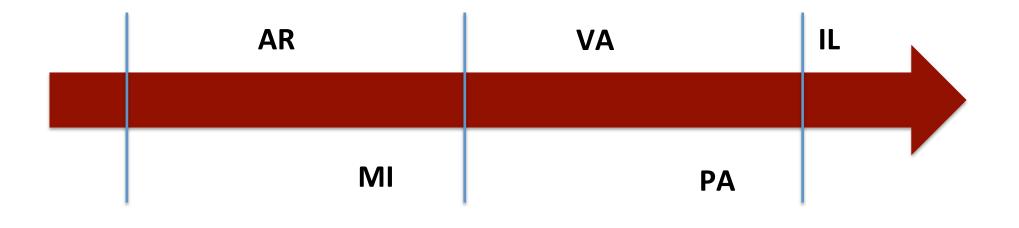


Credit: Michigan Energy Innovation Business Council

www.mieibc.org

MORE DETAIL ON NETWORK EFFICIENCY IN MICHIGAN UNDER PROPOSED CPP

Without Network Efficiency Net cost of CPP: \$14 million Average Rate Change: \$0.0001/kWh



Credit: Michigan Energy Innovation Business Council

www.mieibc.org

WE WILL RELEASE STEER IN 5 STATES FOR OVER THE NEXT FEW MONTHS

For each state, we will produce two products: the model and an introductory paper.

Matt Stanberry mstanberry@aee.net (919) 423-8897