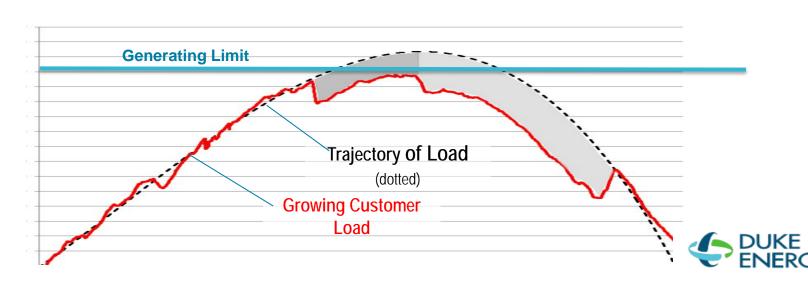


Deriving Additional Value from Smart Grid Investments: VVO Strategies at Duke Energy

About Duke Energy

Regulated Utilities			
States Served	NC, SC, IN, OH, KY, FL		
Size of Service Territory	104,000 sq. miles		
Total Generation Capacity (owned capacity)*	49,626 MW		

	1
Total Electric Retail Customers	7.2 million
North Carolina	3.2 million
South Carolina	720,000
Ohio	690,000
Indiana	800,000
Kentucky	140,000
Florida	1.7 million



Duke Energy Service Territory - Regulated Utilities

Results and Benefits – DE Ohio and DE Progress

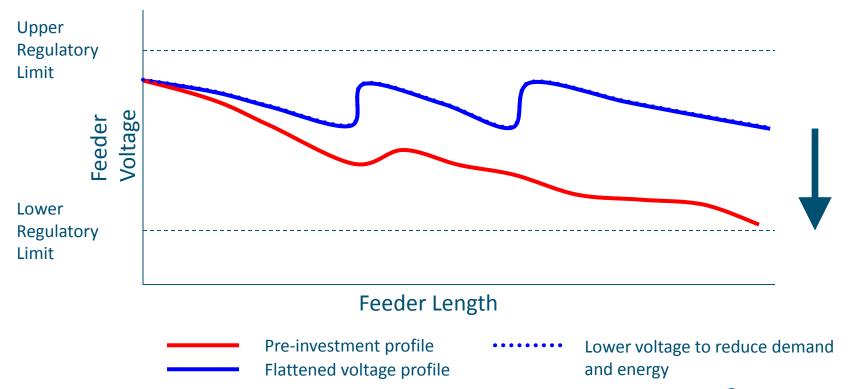
- Duke Energy Ohio
 - CVR provides 1.0 to 1.5% reduction in customer energy usage
- Duke Energy Progress
 - Reduced Summer Peak Demand by 3.6%
 - Saved fuel by reducing the need for physical spinning reserve 2,000 to 4,000 hours per year
 - 2.5% demand reduction in 10 minutes

A Strategic Analysis of VVO Benefit

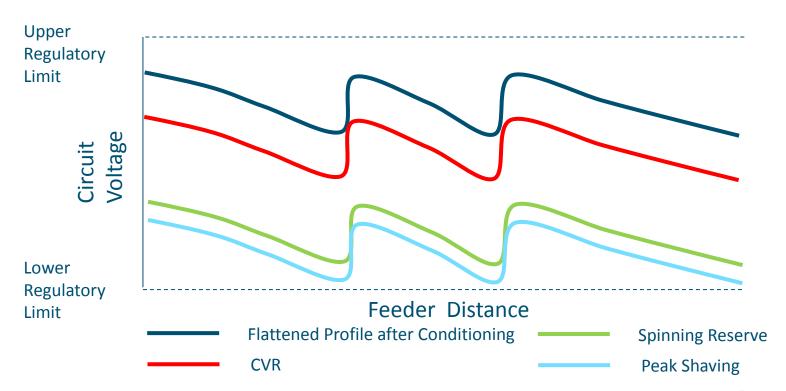
Benefits of VVO	Duke Energy Ohio	Duke Energy Progress	Desired Future State
Current			
Centralized Var Control	X	Χ	X
CVR	X		X
Peak Shaving		Χ	Χ
Spinning Reserve		Χ	X
Load Shed		Χ	Χ
Future			
DER Integration - Steady State Voltage			X
DER Integration - Manage Duck Curve			Χ

These two business cases made sense and each had a different VVO strategy

All of these benefits can be delivered to all of our customers!


The Business Case for Volt/Var Optimization (VVO)

Danasita as MO	For the second of Demostic	Customer Financial	Utility Operational
Benefits of VVO	Environmental Benefit	Benefit	Benefit
Current			
Centralized Var Control	Fuel Savings	\$\$	+++
CVR	Fuel Savings	\$\$\$	+
Peak Shaving	Deferred Generation Build	\$\$\$	+++
Spinning Reserve	Fuel Savings	\$	+++
Load Shed			
Futuro	D	\$	
Future	Renewable Energy	Φ	++
DER Integration - Steady State			
Voltage	Renewable Energy	\$\$	+++
	Good for the	Good for the	Good for Utility
	environment!	Customer!	Operations!


We have a good business case because we are aligned!

The Basics of VVO Operation – Invest to Flatten the Voltage Profile

System Voltage Levels are Dynamic

- We can derive additional customer value by leveraging our past Smart Grid Investments
- VVO can deliver multiple benefit streams
- The business case is strong because it is a win/win/win!
- Regulatory support is crucial
- As we further invest in Smart Grid technology we will derive additional benefits

Thank You!