

Proudly Operated by Battelle Since 1965

Applying the Smart Grid to Climate Change Mitigation: Emissions Impact Estimation Tool for Smart Grid Projects

ROB PRATT

Pacific Northwest National Laboratory

Presented at: National Summit on Smart Grid and Climate Change Washington, DC Dec 2, 2014

Topics for Today's Presentation

- What do we mean by an emissions impact estimator? Why is that important?
- What is the potential scope of smart grid projects involved?
- What do we have to base the impacts estimates on?
- Impact mechanisms vs. project types for a project impact estimator
 - Development process for the estimator

What is an Emissions Estimator? Why Build One?

- **Goal** construct a web-based tool that:
 - Uses a (new) standardized methodology for estimating the environmental impacts of a range of types of smart grid projects
 - Uses *quantitative inputs describing the scope* of a project
 - Computes *impacts on carbon, particulates, & transportation fuel* use
 - Reflects regional differences regarding effects of displacing generation

Objectives:

- Help utilities & policymakers (e.g., public utility commissions) evaluate smart grid projects
- Provide a transparent, objective process for estimating impacts that helps acceptance
- Document all input assumptions

This is a new Office of Electricity funded project just getting underway

Previous Study – The Smart Grid: An Estimation of the Energy and CO2 Benefits*

- Question: Does a smart grid have a substantial role to play in the nation's carbon management agenda?
- Goal: Estimate the range of potential energy & carbon benefits attributable to a smart grid
- Nine mechanisms for a smart grid to help reduce energy & carbon were investigated
- **Two classes of benefits** reducing in energy consumption & emissions:
 - *direct* from smart grid applications
 - *indirect* from reduced costs for operating renewables in the grid
- Other potential environmental benefits were not examined (particulate emissions, land use, etc.)

Separate analysis of ARRA smart grid projects** developed methods for

- Regional impacts on generation mix from shifting load (or net load)
- Reductions in utility truck rolls

* https://www.smartgrid.gov/sites/default/files/doc/files/The_Smart_Grid_Estimation_Energy_CO2_Benefits_201011.pdf ** see: http://gridlab-d.sourceforge.net/wiki/index.php/Publications#2012

Primary Results from the Previous Study

Mechanism	Electric Sector Energy CO ₂ Reductions	
	Direct	Indirect
Conservation Effect of Consumer Information and Feedback Systems	3%	-
Joint Marketing of Efficiency and Demand Response Programs	-	0%
Diagnostics in Residential and Small/Medium Commercial Buildings	3%	-
Measurement and Verification for Efficiency Programs	1%	0.5%
Shifting Load to More Efficient Generation	< 0.1%	-
Support Additional Electric Vehicles (EVs) / Plug-In Hybrid Electric Vehicles (PHEVs)	3%	_
Conservation Voltage Reduction and Advanced Voltage Control	2%	-
Support Penetration of Solar Generation (RPS > 25%)	(1)	(2)
Support Penetration of Wind Generation (25% RPS)	< 0.1%	5%
Total, Share of U.S. Electric Sector Energy and CO ₂ Emissions	12%	6%

EPRI's Green Grid Report estimates (direct-only) reductions in range of <u>2%</u> to <u>7%</u> at less than 100% smart grid penetration

 Note EPRI investigated somewhat different mechanisms, on a different basis

* Assumes 100% penetration of smart grid in 2030; lower penetration produces proportionately smaller impacts

Considerable uncertainty exists for each mechanism investigated: typically ~ <u>+</u>50%

Direct vs. Indirect Benefits

Direct benefits attributable to smart grid applications:

- Energy efficiency (generation, T&D losses, loads)
- Shifting (net) load to periods with cleaner generation mix
- Reduction in use of generation (fuel used) for balancing/ancillary services
- Reduction in VARs supplied by generation
- Shifting fuel-based load to cleaner electricity (e.g. EVs)
- Indirect benefits are reduced costs for operating renewables
 - Reduced operating costs <u>will</u> enable increased penetration of renewables
 - How did we translate \$ saved to a CO2 benefit?
 - Assumed savings reinvested in cost-effective renewables or efficiency
 - Credits smart grid with the <u>extra</u> renewables that presumably would result

Impact Mechanisms vs. Project Types

	Direct		Indirect
Project Type	Displaced Generation Emissions	Displaced Vehicle Emissions	Reduced Cost for Renewables
Substation automation		Х	
Feeder automation/reconfiguration		Х	Х
Distribution management systems		Х	Х
Transmission energy management systems	Х		Х
Volt-VAR control & CVR	Х		Х
Smart inverter (& load) coordination	Х		Х
Protection schemes for solar PV		Х	Х
Advanced metering infrastructure w/ dynamic rate	Х	Х	
Demand response/flexible loads	Х		Х
Distributed storage	Х		Х
Charging & V2G from electric vehicles	Х	Х	Х

Developing an Emissions Estimator

Proudly Operated by Battelle Since 1965

- Federally-hosted, web-based tool
- Map smart grid project types to impact mechanisms
- Impact estimates from the literature & first principles
- Regional emissions profiles based on EIA data or production cost models (must be able to update)
- User inputs define scope & scale of project
- User interface may allow impact mechanisms & emissions profiles assumptions to be modified (within limits)
- Printable format documenting all inputs & results

Review committee for project will be established by DOE to gather stakeholder input

Proudly Operated by Battelle Since 1965

Thank you ... and, Questions ...

Rob Pratt Pacific Northwest National Laboratory robert.pratt@pnl.gov 509 375-3648

Impact Mechanisms vs. Project Types

	Direct		Indirect
Project Type	Displaced Generation Emissions	Displaced Vehicle Emissions	Reduced Cost for Renewables
Substation automation		Truck rolls	
Feeder automation/reconfiguration		Truck rolls	Increased PV hosting
Distribution management systems		Truck rolls	Increased PV hosting
Transmission energy management systems	More efficient gen. dispatch		Increased hosting, displaced operational costs
Volt-VAR control & CVR	Displaced VARs (losses & gen.); lower loads; load shifting		Increased PV hosting
Smart inverter (& load) coordination	Displaced VARs (losses & gen.)		Increased PV hosting
Protection schemes for solar PV		Truck rolls	Increased PV hosting
Advanced metering infrastructure w/ dynamic rate	Load shifting (behavior)	Truck rolls	
Demand response/flexible loads	Load shifting (tech.)		Increased hosting, displaced operational costs
Distributed storage	Load shifting net of charging losses		Increased hosting, displaced operational costs
Charging & V2G from electric vehicles	Scheduled charging	Tailpipe vs. gen. emissions	Increased hosting, displaced operational costs (V2G)