

Value-Based Reliability Planning for Grid Modernization Investments

November, 2014

Michael Sullivan, Senior Vice President Josh Schellenberg, Managing Consultant Alana Lemarchand, Consultant

Agenda

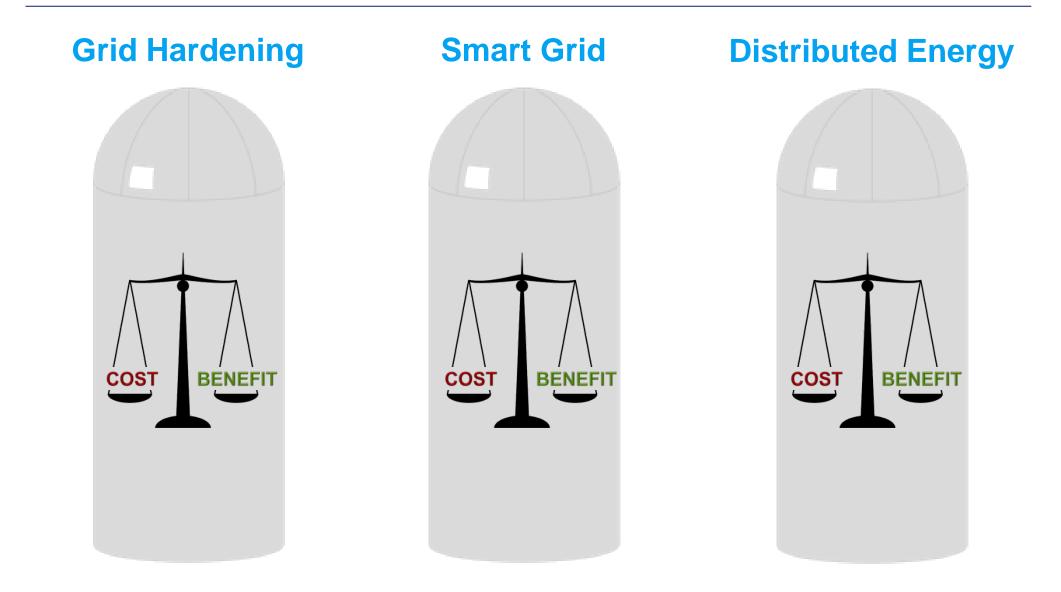
- Utility industry dilemma: how to allocate scarce funds across diverse grid modernization options?
- Grid modernization investment decision framework
- Takeaway: 5 issues the industry needs to understand and quantify

Forces driving grid modernization -- limited funds mean investment in one area will take away from another

Economic growth Grid security Climate change Outcome

() Nexant

Example: Benefits/Costs considered in Value of Solar proceedings


Value ranges for VOS components (cents / kWh)

Category	Impact	RMI study	MN VOST	Consistent range (excluding outliers)
	Fuel / gen cost		4.05	
Energy	O&M costs (Fixed + variable)	2.5 to 10.5	0.28	4 to 7 cents
Energy	Fuel price hedge	0.4 to 3.8	NA	inconsistent
	Market price response	0.8 to 4.5	NA	inconsistent
	Generation capacity	1 to 11	2.37	1 to 2 cents
Capacity	Ancillary services / costs	-0.4 to 1.5	0.17	inconsistent
	T&D capacity	0.1 to 8.5	2.46	0 to 1.5 cents
Environ-	Emissions (Carbon + Criteria pollutants	0.0365 to 3.9	2.87	1.5 to 2.5 cents
mental	Water	0.1	NA	inconsistent
	Resiliency	1 to 2.25	NA	inconsistent
Social	Economic development	1 to 4.5	NA	inconsistent

Example: Benefits/Costs considered in DER evaluation

Criteria		Definition		
Cost per Effective MW		Effective MW is the amount of peak load in MW's that can be carried by a specific resource after taking account reliability, dispatch constraints, load shapes, etc. Cost per Effective MW is the component Effective MW divided by its total cost to ConEd, including project costs, incentives, and administrative costs.		
Other Energy Benefits		Other energy benefits include avoided distribution costs (based on system wide average primary feeder, transformer, and secondary cable costs), avoided generation capacity costs (based on NYISO capacity demand curve), and avoided energy costs (based on NYISO projected LBMPs for NYC). Other known energy benefits can also be included.		
fits	Resiliency benefits	Accounts for expected outage costs from major weather events avoided by the resource over its lifetime.		
Benefits	Avoided CO2 emissions	Benefit of emissions avoided over the lifetime of the resource.		
Energy I	Health benefits	Benefit of SOx, NOx, and particulate emissions avoided over the lifetime of the resource.		
Ene	Economic benefits	GDP and employment impacts resulting from energy savings		
Non	Other non-energy benefits	Other avoided resource costs, such as water conservation, over the lifetime of the resource.		
Proposal viability		Estimation of likelihood of proposal success. Factors considered include execution details provided in the RFI, such as marketing plan, customer targets, etc.		
Respondent qualifications		Estimation of demonstrated ability of the contractor to successfully execute the proposal. Factors consider include experience in similar past projects.		
Reliability of load reduction		Estimation of likelihood the DER technology will deliver stated load reduction. Factors consider include newness of the technology and proven measurement of load reduction.		
Flexibility of resource		Estimation of the ability of the resource to be dispatched at any time.		
Availability of other funding sources		Degree to which additional funds are provided by outside initiatives (e.g., not utility or participant).		

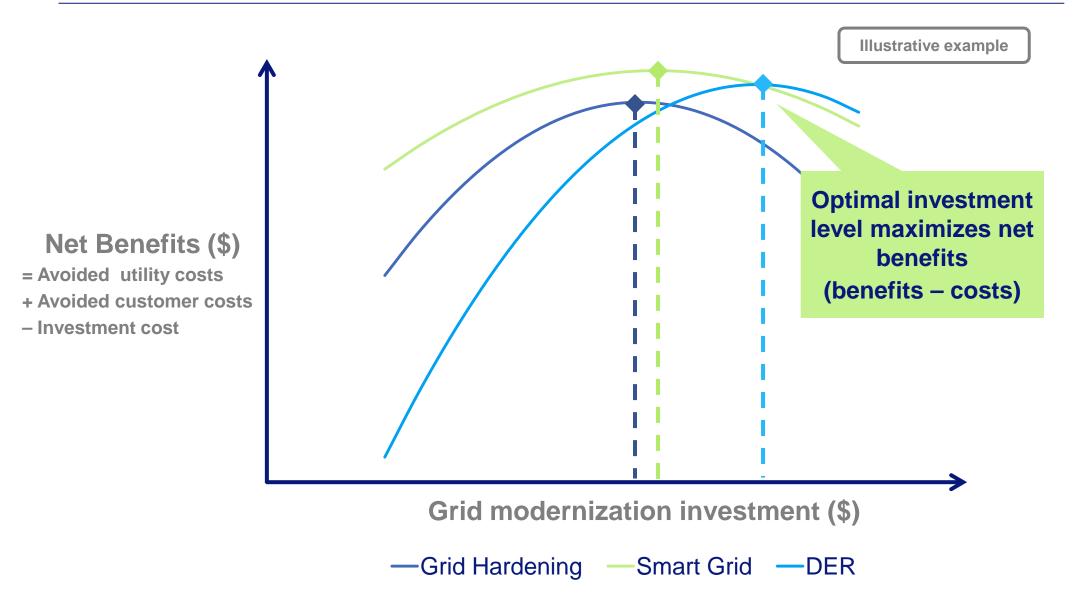
Grid modernization decisions currently siloed—different budgets, goals, success metrics

() Nexant

Similar impacts apply to each type of investment, though size and magnitude differs

Illustrative example

	Magnitude, direction of grid modernization im		
Impacts (Benefits & Costs)	Grid Hardening	Smart Grid	DER
Capital investment	\$\$\$\$	\$\$\$\$	\$\$\$\$
GT&D Capacity	\$\$\$	\$	\$\$\$
Energy generation		\$	\$\$\$
GT&D O&M	\$\$	\$\$\$	Uncertain
Environmental			\$
Power quality	\$	\$\$	\$\$
Reliability: Utility restoration costs	\$\$\$	\$\$\$	\$\$
Reliability: Customer outage costs	Uncertain	\$\$\$\$	Uncertain
Resiliency: Wide-scale blackouts	\$\$\$\$\$		\$\$


\$ Benefit **\$** Cost

Reliable, resilient energy is the most fundamental benefit the grid delivers: reliability impacts are substantial and cannot be ignored

Grid investments inconsistently consider customer costs; DER ignores reliability; Resiliency methodology lacking

		Consideration of impacts in decision frameworks			orks	
Impacts		Grid Hardenin	g	Smart Grid	DER	
Capital investment						
GT&D Capacity						
Energy generation		0				
GT&D O&M						DER
Environmental		0		\bigcirc		ignore
Power quality	ustomer nconsiste					reliabili
Reliability: Utility restoratio						
Reliability: Customer outag	ge costs	•	ΓĒ	•		
Resiliency: Wide-scale bla	ckouts	C				
Not considered				Resiliency		
Recognized, methodology unknown				lacking		
Decompined motheral and a surprise to a second stand			methodology			
Recognized, methodol	logy consi	istently applied				7

Optimal (net benefit maximizing) investment level differs by investment category and specific investment

() Nexant

Grid investment evaluation best practice: Compare cost and benefits <u>across options</u> for an optimal portfolio

Distributed Energy Portfolio Grid Hardening Smart Grid Net Benefits Options (Benefit-Cost) Costs **Benefits** Costs **Benefits** Costs **Benefits** Α +2 +++ B +1 ++С -1 ++ D +3+++++ +2 Ε +++ ++ F +5 ++ ++

> Investment portfolios can be <u>optimized to achieve specified</u> goals, e.g., X reliability, Y resiliency, Z carbon reduction

ပ Nexant

Conceptual

Goal of DOE Reliability / Resiliency collaboration: spread use of known methods and address unknowns

Known	Unknown
<u>Customer surveys</u> provide the best estimate of costs for momentary to multi-hour outages (reliability) <u>Customer studies widely cited</u> , e.g. in regulatory proceedings and cited by White House resiliency report* <u>Outage costs far surpass \$/kWh rates</u> (by orders of magnitude) <u>Outage costs vary widely</u> by geography, segment, duration, time of day, day of week, time of year, weather, etc. <u>Cost per event</u> is the best methods for calculating reliability benefits <i>Avoided outage cost = change in reliability</i> <i>(SAIFI) * Cost per event</i>	 <u>Outage costs for many regions</u> (only a handful of utility specific studies have been conducted) <u>Multi-day outage costs (resiliency)</u>, few if any studies outside of the PG&E long-term cost study have been conducted <u>Incremental resiliency</u> impacts of individual grid modernization investments Detailed engineering modeling needed for each investment Difficulty estimating resiliency impacts due to high level of uncertainty for likelihood of extreme events, number / type of customers affected

Three approaches to incorporating reliability & resiliency into grid modernization decisions

	Approaches for incorporating reliability & resiliency				
Impacts	Ignore	Maintain	Measure & adjust		
Changes in reliability	May inadvertently decrease	→ Keep current level			
Net Benefit Optimization	Excludes reliability	Maintains current reliability as a <u>constraint</u> (assumed to be large but unknown)	Value-Reliability function is an <u>input</u> to optimization		
Pro	Takes zero incremental effort	Simpler to implement (only need to model portfolio to maintain current reliability)	Allows more portfolio flexibility for arriving at net benefits due to aligning cost with value		
Con	Could lead to unforeseen reliability issues and future costs	Constrains net benefit maximization, resulting in lower net benefits	Can be costly and time consuming to implement		
Appropriate use	Never	When implementation resources are constrained	When implementation resources are available		

Net benefits achievable

6 Nexant

Ease of implementation

Solution 5 issues the industry needs to understand and quantify

Key need: a common, standardized framework for evaluating grid modernization investments as a portfolio

	Issue	Understand	Quantify
1	Siloed grid modernization decisions have potentially resulted in sub-optimal investment	What is the most cost-effective grid modernization investment portfolio across Hardening, Smart Grid, DER?	Comparison of impact across investment options on utility cost AND customer value
2	Reliability & resiliency benefits likely substantial and may outweigh other benefits	How <u>can customer value be</u> <u>accurately measured</u> against other more traditional benefits?	Region / utility specific outage costs measured using standard survey best practices
3	DER marginal reliability impacts have only been considered at low penetration	Is there an optimal level of DER investment followed by diminishing returns?	Influence of DER penetration level on SAIFI / SAIDI
4	Interactions / synergies between grid modernization investments largely unstudied	Which options are <u>substitutes</u> versus complements? How do they interact with each other?	Combined vs. individual impact of options on SAIFI/SAIDI
5	Lack of standardized, accepted resiliency benefit evaluation framework, leading to exclusion from decisions	What is a standardized <u>economic framework for</u> <u>evaluating resiliency benefits</u> ? What are the missing pieces?	Likelihood of a catastrophic weather event (e.g., 50 year storm = 2%) Quantity and type of customers likely to get affected

For comments or questions, contact:

Michael Sullivan Senior Vice President MSullivan@nexant.com

Nexant, Inc. 101 Montgomery St., 15th Floor San Francisco, CA 94104 415-777-0707