The Economics of Demand Flexibility

Integrating DERs with sophisticated rates and demand flexibility: the good and the bad

Mark Dyson, Senior Associate, Rocky Mountain Institute
www.rmi.org/electricity_demand_flexibility
Background: rising spending, flat demand

Utilities plan to invest $1.4 trillion in infrastructure upgrades through 2030, but sales have declined 5 out of the last 7 years, and growth forecasts have been systematically lowered.

Grid investment forecast, 2015-2030

<table>
<thead>
<tr>
<th>$ billion</th>
<th>Generation</th>
<th>Transmission</th>
<th>Distribution</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$505</td>
<td>$300</td>
<td>$580</td>
<td>$1,385</td>
</tr>
</tbody>
</table>

Source: DOE QER 2015; EEI; EIA EPM and AEO

EIA electricity consumption projections

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
PV prices are falling and adoption is rising
As rates increase and PV prices fall further, more customers are adopting rooftop PV. Rooftop PV, if intelligently integrated, offers many benefits to the grid.

**PV price and adoption trends**

65% cost reduction for rooftop PV since 1998

**Categories of PV benefits & costs**

Source: LBNL Tracking the Sun VIII; RMI A Review of Solar PV Benefit and Cost Studies

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
A fork in the road
We are at a decision point for how DERs are integrated into the grid

PATH 1 INTEGRATED GRID
One path leads to grid-optimized smart solar, transactive solar-plus-battery systems, and ultimately, an integrated, optimized grid in which customer-sited DERs such as solar PV and batteries contribute value and services alongside traditional grid assets.

PATH 2 GRID DEFECTION
Another path favors non-exporting solar PV, behind-the-meter solar-plus-battery systems, and ultimately, actual grid defection resulting in an overbuilt system with excess sunk capital and stranded assets on both sides of the meter.

Solar PV and batteries play an important role in the future electricity grid, but decisions made today will encourage vastly different outcomes.

Source: RMI The Economics of Load Defection

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
**Demand flexibility and demand response**

Underlying technology is the same, but demand flexibility business models build on and complement the traditional demand response paradigm.

<table>
<thead>
<tr>
<th>Demand Response</th>
<th>Demand Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid focused</td>
<td>Customer focused</td>
</tr>
<tr>
<td>Wholesale drivers: price, reliability</td>
<td>Retail drivers: tariffs, DER integration</td>
</tr>
<tr>
<td>Slow to scale</td>
<td>Consumer value increases scalability</td>
</tr>
<tr>
<td>Infrequent / emergency</td>
<td>Frequent / always on</td>
</tr>
</tbody>
</table>

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
### Trends in rate design value flexibility

Nationwide, 65 million customers are already eligible to opt in to time-of-use pricing rates, and an increasing number of utilities are proposing non-volumetric default rates.

<table>
<thead>
<tr>
<th>Trend</th>
<th>Overview</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-varying energy pricing</td>
<td>Prices for energy change, as often as hourly, depending on time of day.</td>
<td>ComEd, Ameren (IL), California, Massachusetts, &gt;600 others</td>
</tr>
<tr>
<td>Demand charges</td>
<td>Customers pay a fee corresponding to maximum demand during a given period (e.g. monthly)</td>
<td>Salt River Project, Arizona Public Service, PG&amp;E*, SDG&amp;E*, Westar Energy, 10+ others</td>
</tr>
<tr>
<td>Reduced export compensation for PV</td>
<td>Exported PV is compensated at less than the retail rate</td>
<td>HECO*, Alabama Power, Xcel*, Tucson Electric*, SCE*</td>
</tr>
<tr>
<td>Increased fixed charges</td>
<td>Customers pay a non-bypassable fee, regardless of consumption</td>
<td>MG&amp;E, We Energies, WPS, KCP&amp;L, and 40+ more proposals</td>
</tr>
</tbody>
</table>

*proposal
Demand flexibility supports on-site PV use
Load can be scheduled to coincide with PV generation in the absence of net energy metering

Uncontrolled load profile

Flexible load profile

Move load into PV production hours

Source: RMI The Economics of Demand Flexibility
Customers save 10-40% net with DF

Under rates that exist today, residential customers can achieve 10-40% annual bill savings. Across just four markets, there is an $800 million/y savings potential for eligible customers.

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
Case details: Salt River Project

- DF reduces peak demand by 48%
- PV customer saves 41% net on bills
- A new customer breaks even, including cost of PV at today’s prices
- >350,000 eligible customers
- $240 m/y savings for eligible customers
- Unlocks $6 billion rooftop PV market

**Annual supply costs: SRP customer**

<table>
<thead>
<tr>
<th>$/year</th>
<th>Default rate</th>
<th>Energy</th>
<th>Fixed</th>
<th>PV tech</th>
<th>Demand</th>
<th>DF tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/year</td>
<td></td>
<td>$4,000</td>
<td>$2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: RMI The Economics of Demand Flexibility

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
Demand flexibility can avoid >$13 billion/y

By controlling the demand of a few common residential loads without significant service interruption, peak grid demand can be reduced by 8% and capacity investment by 10%+

- $9 billion/y avoided investment
- $3 billion/y lower production costs
- $1 billion/y ancillary services

Source: RMI The Economics of Demand Flexibility

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
Demand flexibility may also enable load defection

If reduced export compensation for rooftop PV gains traction, demand flexibility can hasten load defection dramatically by increasing PV market size and on-site use of PV energy.

**Northeast US: Residential PV market (without NEM)**

<table>
<thead>
<tr>
<th>Year</th>
<th>PV only</th>
<th>PV + DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2020</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>2025</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2030</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

DF can grow the PV market by 60%

**Load defection potential**

<table>
<thead>
<tr>
<th>Year</th>
<th>% of residential sector energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>10%</td>
</tr>
<tr>
<td>2020</td>
<td>10%</td>
</tr>
<tr>
<td>2025</td>
<td>20%</td>
</tr>
<tr>
<td>2030</td>
<td>30%</td>
</tr>
</tbody>
</table>

DF can enable 40% load defection

Under this pricing scheme, do utility costs fall by as much as utility revenues?

Source: RMI The Economics of Demand Flexibility

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.
Implications

Good retail pricing and new business models can unlock massive value from demand flexibility, and reduce customer bills while lowering grid costs.

Utilities & regulators

- Capture the grid value of flexibility + PV with rate design that aligns incentives by lining up customer prices with utility costs
- Seek partnerships to unlock innovation and drive the scale of the flexibility resource

DER developers

- Take advantage of business opportunities that exist today across the US and abroad
- Focus on the customer, but seek to monetize additional grid values of demand flexibility